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Abstract The aim of the present investigation was to study numerically the transient of thermal
convection in a square cavity filled with low-Prandtl-number fluids. The flow is driven by the
horizontal temperature gradient between the vertical walls maintained at different temperatures.
Two-dimensional equations of conservation and energy are solved using a finite element method
and a fractional step time. The discrete equations systems are solved in the lap of each element-
mesh with the aim of verifying the Boussinesq hypothesis locally. To compare our results with the
earlier predictions, we have chosen the fluids for Prandtl-numbers 0.001, 0.005 and 0.01 and
with Grashof numbers up to 1 � 107. To predict the steady state solutions with an oscillary
transient period, the results are reduced in terms of the time series average Nusselt-number at the
vertical walls, the velocity at the center of the cavity and near right boundary. In addition, the
isotherms and the velocity field are produced with the aim of showing the main circulation and
particularly the weak circulations at the corners of the cavity.

1. Introduction
The convection due to thermal buoyancy force, in heated cavities, is an
important and often dominant mode of heat and mass transport when the fluid
is subjected to horizontal temperature gradient. Its dependence on geometry,
Prandtl number (Pr), and Grashof number (Gr) is of practical importance in a
number of heat transfer, materials processing, and other applications (Davis,
1983; Gebhart et al., 1988).

The low-Prandtl number fluids are not much studied experimentally and
particularly the flow due to thermal buoyancy force. The experimental
diagnostic techniques, for these fluids, may introduce significant errors due to
non-wetting between the fluid and the measuring probe. Flow visualisation is
not possible owing to the opaqueness of these fluids and the use of radiation
tracers is difficult. However, we refer to some papers (Yang, 1988; Palucci and
Chenoweth, 1989; Stewart and Weinberg, 1972) where they have simulated a
transient thermal convection using a variety of methods and particularly for
cavities of large aspect ratio. Numerical predictions of steady state thermal
convection in low-Prandtl number fluids have been made by different authors.
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The interesting observation from the results of Steward and Weinberg (1972) is
that the streamlines are almost square for high-Prandtl-number (Pr = 10) fluids,
while they are almost circular for low-Prandtl-number (Pr = 0.013) flows.

Some results of these works are inconsistent. They have not taken into
account the variation of physics properties of fluids due to convection
phenomenon and its effect on the stability of flow. In effect, the stability of the
various flow regimes and transitions between them has important
consequences for the relevant technological processes.

Cless and Prescott (1996a, 1996b) have extended the study of Mohamad and
Viskanta (1991) who compared the ability of different time marching schemes
to resolved dynamical (oscillatory) behavior with the aim of improving the
results. But we think that the ability of all numerical models used for these
fluids is limited by the effecting of physical properties by the convection
phenomenon such as the property of solidified material. For example, the
convection is responsible for the formation of equiaxed grains, which is often
desired, but it is also linked to a defect known as macrosegregation. Therefore,
the Boussinesq approximation is not valid in the mass and it does not take into
account this constraint by any models used in the literature.

In this direction, we propose in this study to use a finite element method for
discretization in space. The elementary characteristic of this method allows us
to verify the Boussinesq hypothesis locally. In addition, we use a fractional step
for discretization in time to surmount the non-linearity of advection term and to
diminish the effect of time marching scheme. The evolution in time of velocity
and of Nusselt number allows us to detect when and for which value of Grashof
number the steady state solution was achieved. Thus, we attempt to refine the
critical Grashof number by predicting the periodic and oscillatory states for
three fluids of low-Prandtl-numbers in order to exhibit also the effect of
Prandtl-number on flow structures and on the onset of instability.

2. Problem formulation
We are concerned with the problem of fluids flow in a square cavity described
in non-dimensional terms by 0 � x1 � 1 and 0 � x2 � A with A � H

L the
aspect ratio, L and H are the length and height of cavity. The cavity has
constant temperature on the vertical walls, T1 on the hot wall and T2 on the
cooler wall, and has insulated horizontal walls (Figure 1). We shall consider the
two-dimensional of transient viscous incompressible flow of fluids. The
convective flow is generated by the buoyancy force as soon as T1 6� T2 and its
intensity depends on the magnitude of the temperature difference
4T � T1 ÿ T2. Otherwise, here the flow is highly non-linear because the
inertial force dominates the flow and the viscous effects are mainly confined to
the boundary layers. For these reasons, we have chosen the convective-velocity����������������

g��TL
p

as scale for velocity so that Gr = Re2 and accordingly the advection
terms are not too small compared with diffusive terms. Scales of L, �T , and

L�����������
g��TL
p are used for length, temperature and time respectively.
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The set of dimensionless governing equations is then:

@~u

@t
� �~u: ~r�~uÿ 1

Re
r2~u� Gr

Re2
T~x2 � ~rp �~0 �1�

~r:~u � 0 �2�
@T

@t
� �~u: ~r�T ÿ 1

RePr
r2T � 0 �3�

~u, p and T are the velocity, pressure and temperature fields respectively. Re, Gr
and Pr are the classical Reynolds, Grashof and Prandtl numbers respectively.
~r andr2 are the gradient and Laplacian operators respectively.

The system of equations (1-3) is solved with suitable boundary conditions:

T � 0:5 at x1 � 0 �4�
T � ÿ0:5 at x1 � 1 �5�

@T

@x2
� 0 at x2 � 0;A � 1 �6�

~u �~0 at all boundaries: �7�

3. Basis of the numerical method
Various methods have been used to solve the system of equations (1-3). Finite
difference, finite element and spectral methods have been employed using
either stream function-velocity or primitive variable approaches. Our idea is to
use a fractional step-time scheme for discretization in time (Jackson and
Winters, 1984) with a semi-implicit type for a truncation error O (4t2), and a
finite element method (Girault and Raviart, 1986) for discretization in space for

X2

e2
e1

Th = 0.5

Hot wall

Tc = –0.5

Cold wall

X1

.c r.

Figure 1.
Schematic diagram and
coordinate system of the
cavity
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primitive variables. Then we surmount the non-linearity of advection term and
we uncouple the convective and diffusive phenomena. Thus, the initial
equations system is decomposed in the series of diffusive and convective steps
where the local equations are obtained from the time t through the three time-
steps t � 4t

3 ; t � 24t
3 and t � 1, as follows:

(1) Step 1: step of diffusion with null divergence

2

4t
~un�1

3 ÿ 2

3Re
r2~un�1

3 � ~rpn�1
3 � 2

4t
~un � 1

3Re
r2~un

ÿ Gr

Re2
Tn~x2 ÿ �~un: ~r�~un �8�

~r:~un�1
3 � 0 �9�

2

4t
Tn�1

3 ÿ 2

3RePr
r2Tn�1

3 � 2

4t
Tn � 1

3RePr
r2Tn ÿ �~un: ~r�Tn �10�

(2) Step 2: step of convection

1

4t
~un�2

3 ÿ 1

3Re
r2~un�2

3 � �~un�1
3: ~r�~un�2

3 � ÿ ~rpn�1
3 � 1

4t
~un�1

3

� 2

3Re
r2~un�1

3 ÿ Gr

Re2
Tn�1

3~x2 �11�

1

4t
Tn�2

3 ÿ 1

3RePr
r2Tn�2

3 � �~un�1
3: ~r�Tn�2

3 � 1

4t
Tn�1

3

� 2

3RePr
r2Tn�1

3 �12�

(3) Step 3: second step of diffusion with null divergence

2

4t
~un�1 ÿ 2

3Re
r2~un�1 � ~rpn�1 � 2

4t
~un�2

3 � 1

3Re
r2~un�2

3

� Gr

Re2
�ÿ1

3
Tn�1

3 � 4

3
Tn�2

3�~x2 � �1
3
~un�1

3: ~rÿ 4

3
~un�2

3: ~r�~un�2
3 �13�

~un�2
3 � 0 �14�
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2

4t
Tn�1 ÿ 2

3RePr
r2Tn�1 � 2

4t
Tn�2

3 � 1

3RePr
r2Tn�2

3

��1
3
~un�1

3 ÿ 4

3
~un�2

3�: ~rTn�2
3 �15�

In steps 1 and 3 the velocity and pressure fields are solutions of generalized
Stokes problem. The advection and buoyancy force terms are in explicit form.
In step 2 the advection term is semi-implicit. The temperature field in different
steps and the velocity field in advection step verify the linear and decoupled
equations, so the discrete spatial approximation will be directly applied.

The generalized Stokes-problem can be written as follows:

�~uÿ �r2~u� ~rp �~f
~r:~u � 0 on the domain of calcul


~u �~0 on @
 � ÿ

with � � 2

4t
and � � 2

3Re

8>>>>>><>>>>>>:
We have chosen a continuous quadrilateral element of high precision with a
quadratic interpolation Q2 for a velocity and a bilinear one Q1 for the pressure
as shown in Figure 2. This combination of interpolation for velocity-pressure
(Q2-Q1) gives a stable scheme that verifies the BabuÃska-Brezzi condition
(Girault and Raviart, 1986). The temperature is approached by the quadratic
element Q2 as velocity.

To overcome the constraint of non-validation of Boussinesq hypothesis to
global scale, we have proceeded to solve the discrete equations systems to
elementary scale where the physical properties are constant in each element-
mesh. In effect, the use of continuous and conformable elements allows us to
write the global system equations as an assembly of elementary systems
(Hughes, 1988). Then, the element vectors of nodal pressures and nodal
velocities are determined by solving the elementary systems. In addition, with
this procedure we exclude all instability of flow due to the variation of physical

Q2 Element

U1, U2, T p

Q1  Element

Figure 2.
Schematic diagram of
quadratic element (Q2)
and of bilinear element
(Q1)
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properties. The conjugate gradient method founded on the Uzawa algorithm
and the preconditioner of Cahouet and Chabart (1988) are used to solve the
discrete equations systems and to close the pressure operator.

All the calculation began with a stagnant fluid, and the temperature of the
left vertical wall was suddenly increased to a constant value for t � 0.
Preliminary calculations were also performed using 51� 51, 41� 41, 31� 31
and 21� 21 grids, but the time-average Nusselt numbers differed by less than
0.5 percent from one case to another. Furthermore, the period of oscillation was
predicted to be the same for the four grids. It is assumed that the uniform
21�21 mesh is sufficiently fine owing to the high precision of the quadratic
element Q2 used for interpolation of the velocity and the temperature. In effect,
each mesh is approached by an element with eight nodes where the velocity
and the temperature are calculated at each of these nodes. To compare this with
the results of Mohamad and Viskanta (1991)[9] where, with a finite difference
method, 61�61 and 81�81 meshes are chosen, as grid independent of results
and where the velocity and temperature are calculated at the midpoint of each
mesh, our uniform grid is considered independent of the results.

Time steps of 0.01 and 0.001 were tested for the same Prandlt and Grashof
numbers, and the results were found to be consistent without difference
between the two cases. We have opted to carry all calculations with the step
0.01 owing to the fractional step-time method used where the step-time is
divided, once more, in two by construction of moment and energy equations in
each step.

4. Results and discussion
For convenience reasons to compare with earlier results, we have chosen three
fluids for low-Prandtl-number 0.001, 0.005 and 0.01. Otherwise, the critical
values of Grashof number, given by some authors, are served for our analysis
as a starting point to search the accurate threshold values.

Results for Pr = 0.001
For Prandtl number Pr = 0.001 and Grashof number Gr = 9�105 no oscillation
or circulation in cavity corners was predicted. This proves that flow and
temperature fields gradually approached steady state. When the Grashof
number increases to 1�106, oscillatory flow is started with a very low
frequency as shown in Figure 3a in the variation, with time, of the U1-velocity
at the center of the cavity. The average Nusselt number at both vertical walls of
the cavity (x1 = 0 or x1 � 1) increased slowly without convergence (Figure 3b).
Velocity field revealed one main circulation (Figure 3c) without circulation in
cavity corners.

For Gr = 2 � 106 the oscillatory transient period was followed by an
oscillating flow (Figure 3d). The computation is extended for long periods of
time to predict the attitude of the oscillations. We remark that after t = 11.5 the
oscillations are amplified and periodic flow is established. The Nusselt number
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did not show convergence but increases with oscillations of feeble amplitude
(Figure 3e). The velocity field revealed one main circulation with some
circulations in the superior corners (Figure 3f).

For Gr = 3�106 the periodic flow is predicted. This is displayed for the U1-
velocity (Figures 4a, 4b) at the center of the cavity and at the mid-cavity near
the right boundary (as located in Figure 1). It should be noticed that all the
locations in the cavity revealed similar trends and differed only in amplitude.

Thus, the damped oscillatory transient periods were predicted for Gr =
1� 106 and the periodic flow at Gr = 3� 106, while the results of Mohamad
and Viskanta (1991) revealed these phenomena at Gr = 2� 106 and at Gr =
3� 106 respectively.
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Time series of U1-
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Results for Pr = 0.005
For Pr = 0.005 and Gr = 9�105 the flow and temperature fields approach a
steady state solution. In effect, the time series for U1-velocity showed uniform
evolution without any oscillation. However, the results for Gr = 1�106 reveal
that the velocity field is almost circular in shape with one main circulation and
any others are present at the cavity corners (Figure 5c). The time history of the
velocity field reveals decaying oscillations transient that are dumped after a
short time (Figure 5a).The duration of the transient stage needed to reach
steady state is t = 6. The average Nusselt numbers at both vertical walls of the
cavity converge to 1.5236 (Figure 5b).

For Gr = 2 � 106, the Figures 5d, 5e, and 5f reveal decaying oscillations for
the U1-velocity time evolution and show that the Nusselt number increases
slowly but it does not converge and some weak circulations in corners begin to
appear.

For Gr = 3 � 106, the flow field at the center of cavity oscillates with a
dimensionless frequency (1

t
= 1.6) (Figure 6a) and the Nusselt-number

converges to about the value 2.000 with oscillations of feeble amplitude (Figure
6b). Otherwise, the corner circulations are cleanly established. The identical
phenomena are noticed for Gr = 5� 106 where we have performed the
computations for long periods of time during which the solution behaviour
remained unchanged. Moreover, if we compare in Figure 7 the variation in time
of velocity respectively for Gr = 1 � 107 and Gr = 5 � 106, we notice that the
frequency of oscillations decreases where Gr increases for the same Prandtl
number 0.005.

It should be mentioned that Mohamad and Viskanta (1991) predicted
oscillatory flow for Pr = 0.005 at Gr > 3� 106 and Benocci (1983) at Gr = 1
� 107 whereas our results reveal oscillating flow for Gr> 1� 106.

Results for Pr = 0.01
For Pr = 0.01 and Gr = 1 � 107, the velocity field reveals two rotating cells of
same direction inside the one main circulation limited by the lateral
confinement. In addition, the cells are cleanly developed in the four corners of
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the cavity and in the time series of the U1-velocity at the center (Figures 8a, 8b).
Results of Mohamad and Viskanta (1991) have predicted similar phenomena.

If we decrease the Grashof number to 8� 106 and to 5� 106, we predict a
periodic flow. The principal frequencies (1

t
) are 1.1 and 1.3 respectively. Gresho

and Upson (1983), using 70� 70 uniform elements meshes, predicted similar
phenomena.

However, for Gr = 4� 106 the oscillations begin to decay without dump
after a long period of time as shown in Figure 9a. Figure 9b shows the growth
of Nusselt-number for both vertical walls with oscillations of feeble amplitude
without convergence. Identical phenomena are predicted for Gr = 3� 106 and
Gr = 2� 106.
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For Gr = 1� 106 a decaying oscillatory transient was predicted and they are
dumped after a short time (Figure 10a) and the velocity field is almost circular
in shape with one main circulation and any one is present at the cavity corners
(Figure 10b). Therefore, the critical value of Grashof number is Gr = 9� 105

where no oscillation was predicted and the flow field asymptotically
approaches a steady state.
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Comparison of results
Table I summarizes the results of the predictions given by our study and that
of Mohamad and Viskanta (1991). We noticed that the critical values are
different for the two studies. Otherwise, a comparison of these results shows
that the steady state flow and the decaying oscillatory transient are predicted,
for all fluids of Prandtl-numbers 0.001, 0.005 and 0.01, almost at identical
values of Grashof-numbers Gr = 9�105 and Gr = 1�106 respectively, but the
critical values for periodic regimes are different for three fluids. We noticed
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Table I.
Summary of numerical
results

Pr Results
Steady
states

Dumped
oscillations Periodic flow

Dimensionless
frequency

0.001 Our results 9�105 1�106 3�106 1.4
Mohamad and Viskanta (1991) 1�106 2�106 3�106

0.005 Our results 9�105 1�106 3�106 2.4
Mohamad and Viskanta (1991) 1�106 3�106 5�106 1.0

0.01 Our results 9�105 1�106 5�106 3.1
Mohamad and Viskanta (1991) 3�106 5�106 8�106
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also, that as the Prandtl-number increases the period of oscillation transient
regime decreases, as mentioned by Mohamad and Viskanta (1991).

It should be mentioned that the improvement of results noticed relative to
that of Mohamad and Viskanta (1991) is due to several factors. The first factor
is the use, in our study, of convective velocity as reference velocity. In effect, its
advantage is that the increase of Grashof number induces the effect of diffusive
term in moment and energy equations, and in consequence the thickness of
dynamic and thermical boundary layers reduces the ability to explore fully the
zones near walls. The second factor is the conception of a numerical model so
that diffusive and convective phenomena are separated in three steps, allowing
a diminution of the effect of non-linearity on the stability of the numerical
scheme. The third factor is the validity of the Boussinesq hypothesis allowing
the elimination of the flow instability due to the variation of fluid physical
properties.

Thus, we have attempted to eliminate all factors responsible for instability
conditions. In effect, for aspect ratio A = 4 and Pr = 0.015, Winters (1987) has
used a technique which locates hopf bifurcation condition and he predicted a
threshold value Gr = 5:91� 104 for oscillatory convection, whereas Crochet et
al. (1987), using direct simulation, predicted a value Gr = 3:2� 105 without
specifying if it is the critical value.

Otherwise, this study shows that vorticity dynamics along the outer
periphery and corners of the cavity were primarily responsible for oscillatory
conditions. In effect, four weak circulation cells were predicted at the corners of
the cavity. The strength of the upper left-hand and lower right-hand
circulations. Our results showed that the upper right and lower left-hand corner
vortices evolved first, followed by the vortices in the other two corners. This
finding is consistent with the results of Gresho and Upson (1983) and that of
Mohamad and Viskanta (1991). Accordingly, the accurate determination of the
threshold of oscillatory convection by direct simulation is very delicate,
because it depends strongly on the numerical method used, on the number of
meshes and on the aspect ratio of cavity. Moreover, the lack of experiment
results for low-Prandtl-number flows, for reasons above-mentioned, urges us to
improve the numerical results by using numerical experimentation and
adequate models.

5. Conclusion
In this paper, we have attempted to determine the accurate values of threshold
of oscillatory convection in a square cavity (A = 1) differentially heated and
filled with fluids of low-Prandtl-numbers Pr = 0.001, 0.05 and 0.01. The
fractional step-time method and finite element method are used for the
discretization of time and space respectively. A range of Grashof numbers up to
1� 107 has been investigated. These results show that for Gr = 9� 105, the
flow field asymptotically approaches steady state with Pr = 0.001, 0.005 and
0.01. Otherwise, for Gr = 1� 106, the dumped oscillatory transient periods
were predicted for all considered Prandtl-numbers. Finally, periodic flow was
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predicted for Pr = 0.001, 0.005 and 0.01 at Grashof numbers of 3� 106, 3� 106

and 5� 106 respectively. To improve the previous results, we have attempted
to eliminate all instability causes such as variation of physical properties
(Boussinesq hypothesis), non-linearity of convective term and the effect of time
marching numerical schemes. Thus, we have contributed to lower the spread
found among the numerical results and the results of stability analysis, owing
to the lack of experimental results of low-Prandtl-number flows.
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